
Homework 5 Oracle

MATH 220 Spring 2021

Sandy Urazayev∗

93; 12021 H.E.

[View the PDF version]

Section 3.1

Problem 9

y ′′+3y ′ = 0, y(0) = −2, y ′(0) = 3

Since this is a linear homogeneous constant-coe�cient ODE, the solution is of the form

y= ert

y= ert =⇒ y ′ = rert =⇒ y ′′ = r2ert

Substitute those expressions into the ODE

r2ert+3(rert) = 0

Divide both sides by ert

r2+3r= 0

Roots of this polynomial are r0 = −3 and r1 = 0. Two solutions to the ODE are y = e−3t

and y= e0 = 1. Therefore, the general solution is

y(t) = C1e
−3t+C2
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Di�erentiating y gives us

y ′(t) = −3C1e
−3t

Now, we can determine our constants by applying the two initial conditions we knowy(0) = C1+C2 =−2

y ′(0) = −3C1 = 3

Therefore C1 =−1 and C2 =−1, therefore

y(t) = −e−3t−1

This solution converges to −1 as t→∞.

Problem 13 [FOR GRADE]

Find a di�erential equation whose general solution is

y= c1e
2t+c2e

−3t

We see the roots are r0 = −3 and r1 = 2. Alternatively, you can make a set of solutions,

and call it r= {−3,2}. So

(r+3)(r−2) = 0

=⇒ r2+ r−6= 0

Multiply both sides by ert

r2ert+ rert−6ert = 0

Therefore, the di�erential equation is

y ′′+y ′−6y= 0
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Problem 16

This is a linear homogeneous constant-coe�cient ODE, apply the same method as in

Problem 9. Find that r= {−1,2} and the general solution is

y(t) = C1e
−t+C2e

2t

The derivative would be

y ′(t) = −C1e
−t+2C2e

2t

Let us solve the initial conditionsy(0) = C1+C2 = α

y ′(0) = −C1+2C2 = 2
=⇒

C1 =
2
3(α−1)

C2 =
1
3(α+2)

Therefore,

y(t) =
2

3
(α−1)e−t+

1

3
(α+2)e2t

We can see that if t→∞, then y→∞. Therefore, set α=−2.

Problem 19

y ′′+5y ′+6y= 9, y(0) = 2, y ′(0) = β,

where β > 0.

Part (a)

This is a linear homogeneous constant-coe�cient ODE, �nd that r = −1
2 ,

1
2 . The two

solutions are

y(t) = C1e
− t

2 +C2e
t
2
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Then

y ′(t) = −
C1

2
e−

t
2 +

C2

2
e

t
2

Solve y(0) = C1+C2 = 2

y ′(0) = −C1
2 + C2

2 = β
=⇒

C1 = 1−β

C2 = 1+β

Finally,

y(t) = (1−β)e−
t
2 +(1+β)e

t
2

To prevent the solution from going to the in�nity and beyond, set β=−1.

Part (b, c, d)

See Professor Van Vleck's notes on this problem.

Problem 21 [FOR GRADE]

ay ′′+by ′+cy= 0,

where a,b,c ∈ R and a > 0.

This is yet again another linear homogeneous constant-coe�cient ODE. Find that

a
(
r2ert

)
+b

(
rert

)
+c

(
ert

)
= 0

Divide both sides by ert

ar2+br+c= 0

=⇒ r=
−b±

√
b2−4ac

2a

Part (a)

For the roots to be real, di�erent and negative, b > 0 and 0 < c < b2

4a .
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Part (b)

For the roots to be real with opposite signs, c < 0.

Part (c)

For the roots to be real, di�erent and positive, b < 0 and 0 < c < b2

4a .

Section 3.2

Problem 5

The Wronskian of these two functions is

W =

∣∣∣∣∣ cos2θ 1+ cos2θ

d
dθ

(
cos2θ

)
d
dθ(1+ cos2θ)

∣∣∣∣∣
=

∣∣∣∣∣ cos2θ 1+ cos2θ

2cosθ(−sinθ) −2sin2θ

∣∣∣∣∣
= cos2θ(−2sin2θ)−(1+ cos2θ)[2cosθ(−sinθ)]

= −2cos2θsin2θ+2sinθcosθ(1+ cos2θ)

= −2cos2θ(2sinθcosθ)+2sinθcosθ
(
1+2cos2θ−1

)
=−4cos2θsinθcosθ+4sinθcosθcos2θ

= 0

Problem 22 [FOR GRADE]

y ′′−y ′−2y= 0

Note: Solutions for this problem are based on Jock's solutions.

Part (a)

Calculate W (y1,y2) the Wronskian of y1 and y2.
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W (y1,y2) =

∣∣∣∣∣ y1 y2

y′
1 y′

2

∣∣∣∣∣
=

∣∣∣∣∣ e−t e2t

−e−t 2e2t

∣∣∣∣∣
= e−t

(
2e2t

)
−e2t

(
−e−t

)
= 2et+et

= 3et

Since W (y1,y2) ̸= 0,y1 and y2 form a fundamental set of solutions.

Part (b)

Check that y3 is a solution of the ODE.

y′′
3−y′

3−2y3
?
= 0

d2

dt2

(
−2e2t

)
− d

dt

(
−2e2t

)
−2

(
−2e2t

) ?
= 0(

−8e2t
)
−
(
−4e2t

)
−2

(
−2e2t

) ?
= 0

−8e2t+4e2t+4e2t
?
= 0

0= 0

Now check that y4 = e−t+2e2t is a solution of the ODE.

y′′
4−y′

4−2y4
?
= 0

d2

dt2

(
e−t+2e2t

)
− d

dt

(
e−t+2e2t

)
−2

(
e−t+2e2t

) ?
= 0(

e−t+8e2t
)
−
(
−e−t+4e2t

)
−2

(
e−t+2e2t

) ?
= 0

e−
ℓ
+8e2t+e−−4e2t−2e−−4e2t

?
= 0

0= 0

Now check that y5 = 2y1(t)−2y3(t) = 2e−t−2
(
−2e2t

)
= 2e−t+4e2t is a solution of the

ODE.

y′′
5−y′

5−2y5
?
= 0

d2

dt2

(
2e−t+4e2t

)
− d

dt

(
2e−t+4e2t

)
−2

(
2e−t+4e2t

) ?
= 0(

2e−t+16e2t
)
−
(
−2e−t+8e2t

)
−2

(
2e−t+4e2t

) ?
= 0

2e−+16e2t+2e−−8e2t−4e−−8e2t
?
= 0

0= 0
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Part (c)

Calculate W (y1,y3), the Wronskian of y1 and y3.

W (y1,y3) =

∣∣∣∣∣ y1 y3

y′
1 y′

3

∣∣∣∣∣
=

∣∣∣∣∣ e−t −2e2t

−e−t −4e2t

∣∣∣∣∣
= e−t

(
−4e2t

)
−
(
−2e2t

)(
−e−t

)
=−4et−2et

=−6et

Since W (y1,y3) ̸= 0,y1 and y3 form a fundamental set of solutions.

Now calculate W (y2,y3), the Wronskian of y2 and y3

W (y2,y3) =

∣∣∣∣∣ y2 y3

y′
2 y′

3

∣∣∣∣∣
=

∣∣∣∣∣ e2t −2e2t

2e2t −4e2t

∣∣∣∣∣
= e2t

(
−4e2t

)
−
(
−2e2t

)(
2e2t

)
=−4e4t+4e4t

= 0

Since W (y2,y3) = 0,y2 and y3 do not form a fundamental set of solutions. Now calcu-

late W (y1,y4), the Wronskian of y1 and y4

W (y1,y4) =

∣∣∣∣∣ y1 y4

y′
1 y′

4

∣∣∣∣∣
=

∣∣∣∣∣ e−t e−t+2e2t

−e−t −e−t+4e2t

∣∣∣∣∣
= e−t

(
−e−t+4e2t

)
−
(
e−t+2e2t

)(
−e−t

)
=−e−2t+4et+e−2t+2et

= 6et

Since W (y1,y4) ̸= 0,y1 and y4 form a fundamental set of solutions. Now calculate

7



W (y4,y5), the Wronskian of y4 and y5.

W (y4,y5) =

∣∣∣∣∣ y4 y5

y′
4 y′

5

∣∣∣∣∣
=

∣∣∣∣∣ e−t+2e2t 2e−t+4e2t

−e−t+4e2t −2e−t+8e2t

∣∣∣∣∣
=
(
e−t+2e2t

)(
−2e−t+8e2t

)
−
(
2e−t+4e2t

)(
−e−t+4e2t

)
=−2e−2t+8et−4et+16e4t−

(
−2e−2t+8et−4et+16e4t

)
= 0

Since W (y4,y5) = 0,y4 and y5 do not form a fundamental set of solutions.

Problem 24

(cost)y ′′+(sint)y ′− ty= 0

Then

y ′′+
sint

cost
−

t

cost
y= 0

so

p(t) = tant

Then

W = Cexp

(
−

∫
tantdt

)
By Abel's Theorem

W = Cexp(ln(cost)) =⇒ W = C× cost
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Problem 31

The equation

P(x)y′′+Q(x)y′+R(x)y= 0

is said to be exact if it can be written in the form

(
P(x)y′)′+(f(x)y)′ = 0

where f(x) is to be determined in terms of $P(x), Q(x),$ and R(x) The latter equation can

be integrated once immediately, resulting in a �rst-order linear equation for y that can be

solved as in Section 2.1. By equating the coe�cients of the preceding equations and then

eliminating f(x), show that a necessary condition for exactness is

P′′(x)−Q′(x)+R(x) = 0

It can be shown that this is also a su�cient condition.
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