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Section 2.4

Problem 2

tan is discontinuous at odd multiples of 7, since 7 < < 37”, the interval is (7, 37").

Problem 4

Dividing both sides by In(t) yields

for In(t) #0 < t#1. cot(t) forces out t to be in the range (0,71). By finding the

intersection of those constraints, we get an interval (1,71).

*University of Kansas (ctu@ku.edu)
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Based on the direction field and on the differential equation, for yp < 0, the slopes

eventually become negative, therefore tend to —oo. If yo =0, then we get an equilibrium

=3.

0 and ty

solution. Note that slopes are zero along the curves y
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Solutions with ty < 0 all tend to —oco. Solutions with initial conditions (to,yo) to the

right of the parabola t =1 +yz asymptotically approach the parabola as t — oco. Integral

curves with initial conditions above the parabola (and yo > 0) also approach the curve.

The slopes for solutions with initial conditions below the parabola (and yp < 0) are all

negative. These solutions tend to —oo.

Problem 27 [FOR GRADE]

The solution of the initial value problem

y1(0) =1

91/ +2y] :O>



—2t. Therefore by approaching to 1 from the left side (1~ notation), we get

is yi(t) =e
y(17) =y;(1) =e2. On the interval (1,00), the differential equation is Y5 +y2 =0 with

ya(t) =ce™.

y(17) =y2(1) =ce™!. Equating both the limits of the function

Therefore by approaching 1 from the right side (notationally 17), we see

Problem 28

The Eleventh Edition (latest) of the book doesn’t have this problem.

Section 2.6

Problem 3 [FOR GRADE]
They have the form M(x,y) +N(x,y)%¥ =0. So
M(x,y) = 3x2—2xy +2 and N(x,y)= 6y2 —x?+3

Then we see %—7;4 = —2x and %—T = —2x. Therefore, our equation is of exact form. So our

solution Fx =M — F:fde:x3—xzy +2x+g(y). Then
Fy=—x"+¢'(y) =N = ¢'(y) =6y’ +3 = gly) =2y’ +3y

Finally,
F=x>—x*y+2x+2y>+3y=C



Problem 5

dy  ax—by
dx  bx—cy

& (ax—Dby)dx+ (bx—cy)dy =0

Now, M = ax—by and N =bx—cy. See that
My=-b#Ny=b

The differential equation is not exact.

Problem 13

Integrating 1y = N, while holding x constant, yields P (x,y) = [ N(x,y)dy + h(x) Taking
the partial derivative with respect to x, Py = f = N(x,y)dy+h'(x) . Now set P = M(x,y)
and therefore h'/(x) = f 3xN(x,y)dy. Based on the fact that My = Ny, it follows

that 5 [h’ (x)] = 0. Hence the expression for h/(x) can be integrated to obtain

h(x) = JM(x,y)dx—J Uaa—XN(x,y)dy] dx
Problem 15 [FOR GRADE]
M=xy%  N=x(1+y?)
— My =33, Ne=1+y?
Trivially, not exact. Let pu(x,y) = x;_s then

1+y?
M x p=x, Nxp= y3 :>(M><”')y:o) (NXH)X:O

Now they’re exact!

So then just find that F =% — 2z +In(y)



Problem 18

M:3x2y+2xy+y3, N:xz—l—yz
— My:3x2+2x+3y2, Ny =2x

Let us find the integrating factor

My —N
)= [ 25

[3x2+2x+3y?—2
:exp( X<+ 2x+3y de)

u X2 4y
= exp ( 3dx)

_ e3x

Simply confirm that M and Nu are now exact. Find F(x,y) = e>*y(3x?+y?) =C



