Homework 4 Oracle

MATH 220 Spring 2021

Sandy Urazayev[∗]

70; 12021 H.E.

[View the PDF version]

Section 2.4

Problem 2

 \tan is discontinuous at odd multiples of $\frac{\pi}{2},$ since $\frac{\pi}{2} < \pi < \frac{3\pi}{2},$ the interval is $(\frac{\pi}{2})$ $\frac{\pi}{2}, \frac{3\pi}{2}$ $\frac{5\pi}{2}$.

Problem 4

Dividing both sides by $ln(t)$ yields

$$
y' + \frac{y}{\ln(t)} = \frac{\cot(t)}{\ln(t)}
$$

for $ln(t) \neq 0 \iff t \neq 1$. cot(t) forces out t to be in the range $(0, \pi)$. By finding the intersection of those constraints, we get an interval $(1,\pi)$.

[∗]University of Kansas (ctu@ku.edu)

Based on the direction field and on the differential equation, for $y_0 < 0$, the slopes eventually become negative, therefore tend to $-\infty$. If $y_0 = 0$, then we get an equilibrium solution. Note that slopes are zero along the curves $y = 0$ and $ty = 3$.

Solutions with t₀ < 0 all tend to $-\infty$. Solutions with initial conditions (t₀, y₀) to the right of the parabola $t = 1 + y^2$ asymptotically approach the parabola as $t \to \infty$. Integral curves with initial conditions above the parabola (and $y_0 > 0$) also approach the curve. The slopes for solutions with initial conditions below the parabola (and $y_0 < 0$) are all negative. These solutions tend to $-\infty$.

Problem 27 [FOR GRADE]

The solution of the initial value problem

$$
y'_1 + 2y_1 = 0
$$
, $y_1(0) = 1$

is $y_1(t)=e^{-2t}$. Therefore by approaching to 1 from the left side $(1^-$ notation), we get $y(1^-) = y_1(1) = e^{-2}$. On the interval $(1, \infty)$, the differential equation is $y_2' + y_2 = 0$ with $\mathsf{y}_2(\mathsf{t}) = \mathsf{c} e^{-\mathsf{t}}$. Therefore by approaching 1 from the right side (notationally $1^+)$, we see ${\mathfrak y}(1^+)={\mathfrak y}_2(1)=\text{c} e^{-1}.$ Equating both the limits of the function

$$
y(1^-)=y(1^+)\iff c=e^{-1}
$$

Therefore the global solution is

$$
y(t) = \begin{cases} e^{-2t}, & 0 \le t \le 1 \\ e^{-1-t}, & t > 1 \end{cases}
$$

Problem 28

The Eleventh Edition (latest) of the book doesn't have this problem.

Section 2.6

Problem 3 [FOR GRADE]

They have the form $M(x,y) + N(x,y) \frac{dy}{dx} = 0$. So

$$
M(x,y) = 3x^2 - 2xy + 2
$$
 and $N(x,y) = 6y^2 - x^2 + 3$

Then we see $\frac{\partial M}{\partial y}=-2x$ and $\frac{\partial N}{\partial x}=-2x$. Therefore, our equation is of exact form. So our solution $F_x = M \implies F = \int M dx = x^3 - x^2y + 2x + g(y)$. Then

$$
F_y = -x^2 + g'(y) = N \implies g'(y) = 6y^2 + 3 \implies g(y) = 2y^3 + 3y
$$

Finally,

$$
F = x^3 - x^2y + 2x + 2y^3 + 3y = C
$$

Problem 5

$$
\frac{dy}{dx} = -\frac{ax - by}{bx - cy}
$$

$$
\iff (ax - by)dx + (bx - cy)dy = 0
$$

Now, $M = ax - by$ and $N = bx - cy$. See that

$$
M_y = -b \neq N_x = b
$$

The differential equation is not exact.

Problem 13

Integrating $\psi_y = N$, while holding x constant, yields $\psi(x,y) = \int N(x,y) dy + h(x)$ Taking the partial derivative with respect to $x,\psi_x=\int\frac{\partial}{\partial x}N(x,y)\,dy+h'(x)$. Now set $\psi_x=M(x,y)$ and therefore $h'(x) = M(x,y) - \int \frac{\partial}{\partial x} N(x,y) dy$. Based on the fact that $M_y = N_x$, it follows that $\frac{\partial}{\partial y}$ $[h'(x)] = 0$. Hence the expression for $h'(x)$ can be integrated to obtain

$$
h(x) = \int M(x,y) dx - \int \left[\int \frac{\partial}{\partial x} N(x,y) dy \right] dx
$$

Problem 15 [FOR GRADE]

$$
M = x2y3, \tN = x(1 + y2)
$$

\n
$$
\implies M_y = 3x2y2, \tN_x = 1 + y2
$$

Trivially, not exact. Let $\mu(x,y) = \frac{1}{xy^3}$, then

$$
M \times \mu = x
$$
, $N \times \mu = \frac{1 + y^2}{y^3} \implies (M \times \mu)_y = 0$, $(N \times \mu)_x = 0$

Now they're exact!

So then just find that $F = \frac{x^2}{2} - \frac{1}{2y^2} + \ln(y)$

Problem 18

$$
M = 3x2y + 2xy + y3, \tN = x2 + y2
$$

$$
\implies M_y = 3x2 + 2x + 3y2, \tN_x = 2x
$$

Let us find the integrating factor

$$
\mu(y) = \exp\left(\int \frac{M_y - N_x}{N} dx\right)
$$

= $\exp\left(\int \frac{3x^2 + 2x + 3y^2 - 2x}{x^2 + y^2} dx\right)$
= $\exp\left(\int 3 dx\right)$
= e^{3x}

Simply confirm that $\mathsf{M}\mu$ and $\mathsf{N}\mu$ are now exact. Find $\mathsf{F}(\mathsf{x},\mathsf{y})=e^{3\mathsf{x}}\mathsf{y}(3\mathsf{x}^2+\mathsf{y}^2)=\mathsf{C}$