Homework 2 Oracle

MATH 220 Spring 2021

Sandy Urazayev[∗]

52; 12021 H.E.

Go back to the home page [View the PDF version]

Chapter 2.1

Problem 13

[∗]University of Kansas (ctu@ku.edu)

Part a

As t gets infinitely large, it simply oscillates in an inverse cosine fashion. a does give the function an initial starting point, to which it starts oscillating from. That would probably be $a+\pi$ because $2cos(t)$ changes its behaviour every π revolution.

Part b

This is a first-order linear differential equation of the form $y'+p(t)y=q(t)$. Find $\mu(t)=$ $e^{\int -\frac{1}{2}}$ and then solve $\frac{d}{dt}(\mu(t)y) = q(t)\mu(t) \implies y = \frac{\int q(t)\mu(t)dt}{\mu(t)}$ $\frac{\mu(t)dt}{\mu(t)}$. You should get

$$
y(t) = ce^{t/2} + \frac{8}{5}\sin(t) - \frac{4}{5}\cos(t)
$$

Then solving for $y(0)$ and c, we have the full solution to be

$$
y(t) = (a + \frac{4}{5}e^{t/2}) + \frac{8}{5}\sin(t) - \frac{4}{5}\cos(t)
$$

Part c

y oscillates for $a = a_0$

Problem 15 [FOR GRADE]

Part a

This is again, a first-order linear differential equation, so we do our μ and integration from both sides trick. Recognize that we have to divide everything by t, so that our lead y *′* doesn't have a coefficient and the method for solving this type of equations is applicable.

$$
ty' + (t+1)y = 2te^{-t} \iff y' + (\frac{t+1}{t})y = 2e^{-t}
$$

After cleaning it up, the actual solution process becomes more or less trivial, $\mu(\text{t})\!=\!e^{\int \frac{\text{t}+1}{\text{t}}}=$ te^{t} . Then we find for $\mathrm{t}>0$

$$
y(t) = \frac{ce^{-t}}{t} + e^{-t}t
$$

Applying $y(1) = a$, then we get

$$
y(t) = te^{-t} + \frac{(ea-1)e^{-t}}{t}
$$

We need $e\,a\,{-}\,1$ to be equal to zero, then $\mathfrak{a}_0=\frac{1}{e}$ e

Part c

As $t \to 0$, then $y \to 0$.

Problem 17 [FOR GRADE]

Recall the solution to Problem 13. We need to swap the sign on $p(t)$ and update the initial value constant solution. We will get

$$
y(t) = -\frac{9}{5}e^{t/2} + \frac{8}{5}\sin(t) + \frac{4}{5}\cos(t)
$$

Set the derivative of y to 0 and solve for t.

$$
0 = -\frac{9}{5} \times (-\frac{1}{2}) \times e^{t/2} + \frac{8}{5} \cos(t) - \frac{4}{5} \sin(t)
$$

You can check the nature of the point by taking $y^{\prime\prime}$. Finally, we find that the local maximum is at $(t,y) = (1.36, 0.82)$. Better approximated values are accepted.

Problem 20

The solution process is similar to the problem of 17, you should get a general solution for y:

$$
y = -1 - \frac{3}{2}(\sin t + \cos t) + Ce^{t}
$$

where C is a constant. Solving $\mathfrak{y}(0)=\mathfrak{y}_0$ for \mathfrak{y}_0 yields that $\mathsf{C}=\mathfrak{y}_0+\frac{5}{2}$ $\frac{5}{2}$ so then the solution is $y_0 = -\frac{5}{2}$ $\frac{5}{2}$.

Problem 28

Part a

Recall the form $y'+p(t)y=g(t)$ and solution form of

$$
\frac{d}{dt}(\mu(t)y) = g(t)\mu(t)
$$

Then if $g(t)=0$, solution is $y=Ae^{-\int p(t)dt}$

Part b

Simply substitute (50) into (48), perform some trivial Chain Rule and confirm that

$$
A'(t)=g(t)\,exp\left(\int\! p(t)dt\right)
$$

Part c

Substitution is mechanical. Prove that variation of parameters works.

Chapter 2.2

Problem 1

dy dx $=\frac{x^2}{x^2}$ y

then

$$
\int y\,dy = \int x^2\,dx
$$

So the solution is

$$
3y^2 - 2x^3 = C
$$

It's OK to leave the solution implicitly here, otherwise, the explicit solution for y can be very nasty.

Problem 7

$$
\frac{dy}{dx} = \frac{y}{x}
$$

then

$$
\int \frac{dy}{y} = \int \frac{dx}{x}
$$

Then

$$
\ln(y) = \ln(x) + \ln(C) = \ln(C \times x)
$$

C is any constant, then $ln(C)$ is also a constant. Finally, $y = Cx$

Problem 8 [FOR GRADE]

then

$$
\int y dy = - \int x dx
$$

 $=\frac{-x}{-}$ y

dy dx

Therefore

$$
y^2 + x^2 = C
$$

It's fine if you wrote $y = \pm \sqrt{C - x^2}$

Problem 21

$$
y' = \frac{ty(4-y)}{3}
$$
, $y(0) = y_0$

Part a

As $t \to \infty$, then $y \to 4$

Part b

First, you will have to solve the system, which is a first-order separable ordinary differential equation. The implicit solution is

$$
\frac{3}{4}\ln(\frac{4}{4-5}) = \frac{t^2}{2} + C
$$

where $\mathsf{C} = \frac{3}{4}$ $\frac{3}{4} \ln(\frac{y_0}{4-y_0})$ $\frac{y_0}{4-y_0}$). Solve for t, so

$$
t=\sqrt{\frac{3}{2}\ln\left(\frac{y(4-y_0)}{y_0(4-y)}\right)}
$$

Use $y = 3.98$ and $y_0 = 0.5$, then $t \approx 3.29527$.

Problem 25

Part a

Simple divide both the numerator and the denominator by x .

Part b

You should get

Part c

This is simply to show.

Part d

Yet another separable equation, you should get the implicit solution

$$
x^4|2-v||v+2|^3 = C
$$

Part e

Rearrange to get

$$
|y+2x|^3|2x-y|=C
$$

Part f

It's like a $1/x$ star.