February 11th, 2020
\(\mathbf{Theorem}\)
\(\sqrt{2}\) is irrational.
\(\mathbf{Proof}\)
Let \(a,b \in \mathbb{Z} \quad, \frac{a}{b}=\sqrt{2},\quad b \neq 0, \quad (a,b)=1\)
Then \(a=\sqrt{2}b\)
\begin{align*} \implies & a^2=2 \times b^2 \quad (\Xi) \\ \implies & 2|a^2 \\ \implies & 2|a \\ \end{align*}
Then if \(a\) is even, \(\exists k \in \mathbb{Z} \ni a = 2k\)
Then substitute into \((\Xi)\), we get \((2 \times k)^2=2\times b^2\)
\begin{align*} \implies & 4 \times k^2 = 2 \times b^2 \\ \implies & 2 \times k^2 = b^2 \\ \implies & 2|b^2 \\ \implies & 2|b \end{align*}
If \(a\) and \(b\) are both even, it contradicts the initial condition \((a,b)=1\).
\(\therefore\) By Law of Contradiction, \(\sqrt{2}\) is irrational ◼︎